Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Commun Med (Lond) ; 1: 62, 2021.
Article in English | MEDLINE | ID: covidwho-1860422

ABSTRACT

Background: The coronavirus disease 2019 (COVID-19) pandemic has challenged researchers performing clinical trials to develop innovative approaches to mitigate infectious risk while maintaining rigorous safety monitoring. Methods: In this report we describe the implementation of a novel exclusively remote randomized clinical trial (ClinicalTrials.gov NCT04354428) of hydroxychloroquine and azithromycin for the treatment of the SARS-CoV-2-mediated COVID-19 disease which included cardiovascular safety monitoring. All study activities were conducted remotely. Self-collected vital signs (temperature, respiratory rate, heart rate, and oxygen saturation) and electrocardiographic (ECG) measurements were transmitted digitally to investigators while mid-nasal swabs for SARS-CoV-2 testing were shipped. ECG collection relied on a consumer device (KardiaMobile 6L, AliveCor Inc.) that recorded and transmitted six-lead ECGs via participants' internet-enabled devices to a central core laboratory, which measured and reported QTc intervals that were then used to monitor safety. Results: Two hundred and thirty-one participants uploaded 3245 ECGs. Mean daily adherence to the ECG protocol was 85.2% and was similar to the survey and mid-nasal swab elements of the study. Adherence rates did not differ by age or sex assigned at birth and were high across all reported race and ethnicities. QTc prolongation meeting criteria for an adverse event occurred in 28 (12.1%) participants, with 2 occurring in the placebo group, 19 in the hydroxychloroquine group, and 7 in the hydroxychloroquine + azithromycin group. Conclusions: Our report demonstrates that digital health technologies can be leveraged to conduct rigorous, safe, and entirely remote clinical trials.

2.
Cardiovasc Digit Health J ; 3(2): 62-74, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1587976

ABSTRACT

BACKGROUND: Adverse events in COVID-19 are difficult to predict. Risk stratification is encumbered by the need to protect healthcare workers. We hypothesize that artificial intelligence (AI) can help identify subtle signs of myocardial involvement in the 12-lead electrocardiogram (ECG), which could help predict complications. OBJECTIVE: Use intake ECGs from COVID-19 patients to train AI models to predict risk of mortality or major adverse cardiovascular events (MACE). METHODS: We studied intake ECGs from 1448 COVID-19 patients (60.5% male, aged 63.4 ± 16.9 years). Records were labeled by mortality (death vs discharge) or MACE (no events vs arrhythmic, heart failure [HF], or thromboembolic [TE] events), then used to train AI models; these were compared to conventional regression models developed using demographic and comorbidity data. RESULTS: A total of 245 (17.7%) patients died (67.3% male, aged 74.5 ± 14.4 years); 352 (24.4%) experienced at least 1 MACE (119 arrhythmic, 107 HF, 130 TE). AI models predicted mortality and MACE with area under the curve (AUC) values of 0.60 ± 0.05 and 0.55 ± 0.07, respectively; these were comparable to AUC values for conventional models (0.73 ± 0.07 and 0.65 ± 0.10). There were no prominent temporal trends in mortality rate or MACE incidence in our cohort; holdout testing with data from after a cutoff date (June 9, 2020) did not degrade model performance. CONCLUSION: Using intake ECGs alone, our AI models had limited ability to predict hospitalized COVID-19 patients' risk of mortality or MACE. Our models' accuracy was comparable to that of conventional models built using more in-depth information, but translation to clinical use would require higher sensitivity and positive predictive value. In the future, we hope that mixed-input AI models utilizing both ECG and clinical data may be developed to enhance predictive accuracy.

4.
EClinicalMedicine ; 33: 100773, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1103840

ABSTRACT

BACKGROUND: Treatment options for outpatients with COVID-19 could reduce morbidity and prevent SARS-CoV-2 transmission. METHODS: In this randomized, double-blind, three-arm (1:1:1) placebo-equivalent controlled trial conducted remotely throughout the United States, adult outpatients with laboratory-confirmed SARS-CoV-2 infection were recruited. Participants were randomly assigned to receive hydroxychloroquine (HCQ) (400 mg BID x1day, followed by 200 mg BID x9days) with or without azithromycin (AZ) (500 mg, then 250 mg daily x4days) or placebo-equivalent (ascorbic acid (HCQ) and folic acid (AZ)), stratified by risk for progression to severe COVID-19 (high-risk vs. low-risk). Self-collected nasal swabs for SARS-CoV-2 PCR, FLUPro symptom surveys, EKGs and vital signs were collected daily. Primary endpoints were: (a) 14-day progression to lower respiratory tract infection (LRTI), 28-day COVID-19 related hospitalization, or death; (b) 14-day time to viral clearance; secondary endpoints included time to symptom resolution (ClinicalTrials.gov: NCT04354428). Due to the low rate of clinical outcomes, the study was terminated for operational futility. FINDINGS: Between 15th April and 27th July 2020, 231 participants were enrolled and 219 initiated medication a median of 5.9 days after symptom onset. Among 129 high-risk participants, incident LRTI occurred in six (4.7%) participants (two control, four HCQ/AZ) and COVID-19 related hospitalization in seven (5.4%) (four control, one HCQ, two HCQ/AZ); no LRTI and two (2%) hospitalizations occurred in the 102 low-risk participants (one HCQ, one HCQ/AZ). There were no deaths. Among 152 participants with viral shedding at enrollment, median time to clearance was 5 days (95% CI=4-6) in HCQ, 6 days (95% CI=4-8) in HCQ/AZ, and 8 days (95% CI=6-10) in control. Viral clearance was faster in HCQ (HR=1.62, 95% CI=1.01-2.60, p = 0.047) but not HCQ/AZ (HR=1.25, p = 0.39) compared to control. Among 197 participants who met the COVID-19 definition at enrollment, time to symptom resolution did not differ by group (HCQ: HR=1.02, 95% CI-0.63-1.64, p = 0.95, HCQ/AZ: HR=0.91, 95% CI=0.57-1.45, p = 0.70). INTERPRETATION: Neither HCQ nor HCQ/AZ shortened the clinical course of outpatients with COVID-19, and HCQ, but not HCQ/AZ, had only a modest effect on SARS-CoV-2 viral shedding. HCQ and HCQ/AZ are not effective therapies for outpatient treatment of SARV-CoV-2 infection. FUNDING: The COVID-19 Early Treatment Study was funded by the Bill & Melinda Gates Foundation (INV-017062) through the COVID-19 Therapeutics Accelerator. University of Washington Institute of Translational Health Science (ITHS) grant support (UL1 TR002319), KL2 TR002317, and TL1 TR002318 from NCATS/NIH funded REDCap. The content is solely the responsibility of the authors and does not necessarily represent the views, decisions, or policies of the institutions with which they are affiliated. PAN and MJA were supported by the Mayo Clinic Windland Smith Rice Comprehensive Sudden Cardiac Death Program.Trial registration ClinicalTrials.gov number NCT04354428.

5.
Heart Rhythm O2 ; 1(3): 167-172, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-593447

ABSTRACT

BACKGROUND: Observational studies have suggested increased arrhythmic and cardiovascular risk with the combination use of hydroxychloroquine (HCQ) and azithromycin in patients with coronavirus disease 2019 (COVID-19). OBJECTIVE: The arrhythmic safety profile of HCQ monotherapy, which remains under investigation as a therapeutic and prophylactic agent in COVID-19, is less established and we sought to evaluate this. METHODS: In 245 consecutive patients with COVID-19 admitted to the University of Washington hospital system between March 9, 2020, and May 10, 2020, we identified 111 treated with HCQ monotherapy. Patients treated with HCQ underwent a systematic arrhythmia and QT interval surveillance protocol including serial electrocardiograms (ECG) (baseline, following second HCQ dose). The primary endpoint was in-hospital sustained ventricular arrhythmia or arrhythmic cardiac arrest. Secondary endpoints included clinically significant QTc prolongation. RESULTS: A total of 111 patients with COVID-19 underwent treatment with HCQ monotherapy (mean age 62 ± 16 years, 44 women [39%], serum creatinine 0.9 [interquartile range 0.4] mg/dL). There were no instances of sustained ventricular arrythmia or arrhythmic cardiac arrest. In 75 patients with serial ECGs, clinically significant corrected QT (QTc) prolongation was observed in a minority (n = 5 [7%]). In patients with serial ECGs, there was no significant change in the QTc interval in prespecified subgroups of interest, including those with prevalent cardiovascular disease or baseline use of renin-angiotensin-aldosterone axis inhibitors. CONCLUSIONS: In the context of a systematic monitoring protocol, HCQ monotherapy in hospitalized COVID-19 patients was not associated with malignant ventricular arrhythmia. A minority of patients demonstrated clinically significant QTc prolongation during HCQ therapy.

SELECTION OF CITATIONS
SEARCH DETAIL